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Various questions about the invariant measures of a dynamical system can be 
answered by computations of regular functionals or by ranking methods based 
on a set of observations. This includes symmetry tests and the determination of 
dimension coefficients. The paper contains the theoretical results and several 
simulations explain the methods. 

KEY WORDS: Dynamical systems; invariant measure; Hausdorff dimension; 
symmetric densities; U statistics; rank statistics. 

1. I N T R O D U C T I O N  

There is a growing common interest in quite different fields of science in 
dynamical systems whose trajectories show highly complex behavior. 
Among the earliest, and by now most popular examples, are the Lorenz 
equations ~22) a system of three coupled, nonlinear ordinary differential 
equations, which was designed as a simplified model for convection (see 
Sparrow ~36) for a detailed discussion). Other classical examples are the 
population models described by May ~24'25) and many further references can 
be found. (11'3~ 

A common feature of all these models is that, depending on the choice 
of some governing parameters, they show very different kinds of asymptotic 
behavior, ranging from convergence to a single stable state via limit cycle 
behavior to what is now called "chaos." Although there are several 
approaches to the concept of chaos, we single out two ideas which are most 
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often associated with it: (a) there are uncountably many trajectories which 
are far from being periodic, 1211 and (b) there are "many" (in a suitable 
sense) trajectories which are sensitive to initial conditions, i.e., where 
arbitrarily small changes in the trajectory's initial value result in a com- 
pletely different trajectory after some time. ~a~ Although these concepts 
are of topological nature, many authors claim "randomness" for chaotic 
systems, and indeed, visual inspection of computer simulations of such 
systems seems to justify this terminology./1/A more rigorous description of 
randomness in deterministic dynamical systems is provided by the ergodic 
theoretical approach. Besides its topological structure the phase space is 
endowed with a certain canonical measure (e.g., Lebesgue or Liouville 
measure), and mixing properties of the dynamics with respect to this 
measure specify the degree of stochasticity of the system. Existence or non- 
existence of an invariant probability measure absolutely continuous with 
respect to the canonical measure is closely related to this problem. This 
invariant measure has an invariant density function 3 with respect to the 
canonical measure describing, by Birkhoffs ergodic theorem, the 
asymptotic distribution of a typical trajectory in the phase space. In general 
these investigations are more difficult than those of topological nature. 
Only relatively simple models have been studied so far (see Refs. 3, 32, 33, 
and 39) among these certain classes of piecewise monotonic transfor- 
mations of an interval. ~x536"28'37) For some of these systems, in particular for 
the interval transformations, a type of probabilistic mixing property has 
been established that is known as the weak Bernoulli property in ergodic 
theory and as absolute regularity in probability theory. This fact has an 
important consequence: A sequence of successive observations made on 
such a system can be regarded as the outcome of a stationary sequence of 
random variables. To be more precise, this stationary sequence forms a so- 
called functional of some absolutely regular stationary process (cf. Ref. 17 
for definitions). In this paper, by a "process" we mean a sequence of ran- 
dom variables defined on some probability space, for example, the phase 
space together with its invariant measure. This describes our general point 
of view, and Section 2 gives a precise formulation. Since many of the more 
complicated systems behave (in the above sense) very much like an interval 
transformation (for the Lorenz equations this is discussed in Ref. 36), there 
is some evidence to suggest that for many systems the typical trajectories 
may be interpreted as realizations of a functional of an absolutely regular 
process. Hence, many of the classical asymptotic results in probability are 
available for these processes, like the central limit theorem ~17) or the 
invariance principle./34) 

3 The term density or density function will only be used with this probabilistic meaning. 
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The aim of this paper is to show that various questions about the 
invariant measures of dynamical systems can be answered by applying 
classical statistical methods to the successive outcomes of the systems just 
as in the case of statistically independent observations. The first steps into 
this direction were made by the authors several years ago (see Ref. 4 for a 
discussion), and the theoretical part of the present note is based on Ref. 5. 
We give two examples: 

1. Consider the transformations T1, T2 on [0, 1] given by Tl(x)= 
1 - 1 2 x -  II, T2(x)= 1 - 1 2 x -  112=4x(1 - x )  (see Fig. 1). Both are sym- 
metric (at 1) and have symmetric invariant densities hi (x)= 1 and h2(x)= 
1/~ x / ~  - x). The symmetry of the densities is not a consequence of the 
symmetry of the transformations. Indeed, Gy6rgyi/Sz6pfalusy (12) consider 
perturbations of T1, T 2 that are symmetric again although their invariant 
densities are not 

Ti(e, x )= Ti(x)+ eTi(x)[1 - Ti(x)] i=  1, 2, I~l < ~o 

The corresponding invariant densities are analytic in e 09) and have 
expansions hi(e, x) = 1 + e ( 2 x -  1) + O(e 2) and hz(e, x)  --- h z ( x ) [ l  -b C 

0 
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( x - 1 ) ]  + O(e2). When such a system is observed, it is of interest whether 
the density is symmetric (5--0)  or not (E ~ 0). In Section 4 we compare 
two test procedures for this problem based on the sample mean and the 
Wilcoxon signed rank statistic. 

2. Many higher-dimensional systems have an attracting subset of the 
phase space which is of fractal dimension. (23) Based on numerical 
simulations and on rigorous results for some special cases, a general 
relation between this fractal dimension and the Lyapunov numbers of the 
dynamics is conjectured. (7) This is interesting because the dimension of the 
attracting set is a geometric constant that is defined without explicit 
reference to the dynamics of the system, whereas the Lyapunov numbers 
are dynamical quantities describing an aspect of the time evolution of the 
system. 

In higher-dimensional systems there is no effective way for calculating 
the fractal dimension from observations. (9) Grassberger and Procaccia 
(Ref. 8) suggested that a related quantity, they call correlation exponent, 
and that in many cases agrees with the fractal dimension be studied. In 
contrast to the dimension it reflects differences in concentration of the 
invariant distribution living on the attractor of the system: Let X be the 
phase space, F the invariant distribution. For  r > 0  define the spatial 
correlation integral by 

C r)= fxf  i dF(x) dF(y)  1.1) 

(dist. denotes the distance in phase space). Note that C(r) measures the 
concentration of F and describes the mean volume of a ball of radius r. 
Grassberger and Procaccia (s) show that in many cases C(r)~-const. r v 
(r -o 0) for some v > 0 and that this v is called the correlation exponent. For  
a detailed discussion of dimension see Ref. 6. 

In order to determine v experimentally one has to estimate C(r) for 
different values of r from observations X1,..., XN. This is done using the 
estimator 

1 N 

CN(r)=N(N- I) ~ 1(di,t.(x, xj)<,.> (1.2) 
i , j ~ l  
iv~ j 

which is in fact a U-statistic estimator. 
It can be shown that CN(r) converges to C(r) for almost all sequences 

X1, X2,... of observations; in fact, convergence in probability follows from 
the results in this note. Consequently (1.1) agrees with the usual definition. 
Having estimated CN(r) for different rs, a linear regression will determine v. 



Rigorous Statistical Procedures for Data from Dynamical Systems 71 

In particular, it will be shown that error bounds derived from U-statistic 
theory behave much better than the mean square deviation (which can be 
applied very doubtfully in this case). Thus, fewer observations are 
necessary to obtain estimates with reliable error bounds. 

In Section 2 we give the general definitions of the properties "weak 
Bernoulli" and "absolutely regular" and show by a simple example how to 
regard a dynamical system stochastically as a functional of an absolutely 
regular process. Our theoretical results are stated in Section 3; in par- 
ticular, we give explicit conditions that are fulfilled for all the examples in 
Section 4, where we present results of simulations. We show that the 
asymptotic theory is applicable for reasonable sample sizes. Our main 
example is the symmetry problem for invariant densities of interval maps 
introduced above: We compare the simulation results of two different sym- 
metry tests to their theoretically computed values. We also determine their 
relative asymptotic efficiency for a broad class of transformations, which 
measures the power of these test procedures. Then, by means of a simple 
estimation problem, we demonstrate how seriously the nonvanishing 
correlations between successive observations may influence the asymptotic 
variance of the statistic under consideration and, finally, we give some 
simulation results for the estimator of the correlation exponent from exam- 
ple II (Section 4) using a simple two-dimensional model (18) 

T(x, y ) =  (2x rood 1, 2y + cos 4nx), where 0 < 2 <  1 (1.3) 

As a final remark note that the y component of (xn, y , ) =  T~(x, y) 
may be considered as an autoregressive process of order 1 with error-term 
cos 2nxn, where (x,) is a stationary process with good mixing properties. 

2. S T O C H A S T I C I T Y  OF D Y N A M I C A L  S Y S T E M S  

We begin with a very simple model explaining the situation: Consider 
the transformation T: x ~  2x (mod 1) of the interval [0, 1), and fix an 
initial value Xo. (xn = T~xo is the observed process.) The map T associates 
to Xo a sequence of digits a0, al,  a2 .... (its itinerary) by the following rule 

ai = 0 if Tixo e [0, �89 ai = 1 if Tixo ~ [�89 1 ) 

Note that O.aoala2a3"'" is the binary expansion of x0, i.e. 

Xo = ~ ai 2-(i+I~ (2.1) 
i = 0  

Endowed with the Lebesgue measure, [0, 1) is a probability space, and 
through their dependence on xo the a~ become independent identically dis- 
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tributed random variables with P(a~=O)=P(a~=l)=�89  From (2.1) we 
conclude that 

Tnx0 = ~" an+i 2 (i+1) 
i=o 

Thus the deterministic sequence (T~xo)n~>o is realized as a functional of the 
i.i.d, process (a~)~0. The stationarity of (T~xo)n~>0 is due to the T 
invariance of the Lebesgue measure on [0, 1), while the independence of 
the a~ reflects the good mixing properties of T. 

In general the situation is more complicated: Let m be a probability 
measure on the space X and T: X ~ X a measurable transformation (inver- 
tible or not) which leaves the measure m invariant, i.e., m(T-~A)-- -m(A)  
for A _ X. Fix a finite partition I =  (I~ ..... IN)  of X into (measurable) sets 
and associate with each x o s X  its itinerary (an) by the rule " a n = i  if 
T%o e I~"; n ranges over the integers if T is invertible and over the non- 
negative integers if T is noninvertible. The sequence ( a , ) =  (an(xo)) is a 
stationary process with respect to the measure m. It is called weak Ber- 
noulli if the coefficients 

i lk=sup s u p ~  [m(A n B ) - m ( A )  m(B)[ 
s>~0 t~>0 A B 

tend to zero as k-~ 0% where the sums are taken over all As of the form 
{x ~ X: ai(x) = ci, 0 <~ i <~ s} and over all Bs of the form {x ~ X: bj(x) = dj, 
s + k ~<j~< s + k + t} where the ei and dj belong to the set of possible values 
of the itineraries. Intuitively, /3 k measures globally how far apart from 
independence two pieces of the itineraries are when one of the pieces is 
observed k units of time after the last observation of the other one. /~k/2 
may be taken as a definition of the coefficient of absolute regularity of the 
stationary process (an).  (2'38) Hence (an) is a weak Bernoulli process if and 
only if it is absolutely regular, and the corresponding mixing coefficients 
coincide up to a factor �89 For certain piecewise expanding interval maps 
(including those discussed in this paper) it is known that/3~-~ 0 exponen- 
tially fast as k ~ ~;(15,161 a sketch of the method used there is given in 
Appendix I, 

We still have to make sure that the sequence (T~xo) can be recovered 
from the process (a,), i.e., that the labeling X ~  {1,..., N} ~ (orZ~ defined by 
the itineraries is injective (not necessarily onto). For piecewise expanding 
interval maps this is easily checked (cf. Theorem 5, Ref. 15). Hence, for 
these transformations there is some (partially defined) 45:{1 ..... N} ~ ~ X  
such that T"xo = 45(an, an+ 1, an+z,'-') if (an) is the itinerary of Xo, i.e., T~xo 
is represented as a functional of an absolutely regular stochastic process 
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with exponentially decaying mixing coefficients. Furthermore, in this case 
45 is H61der-continuous; i.e., there is some q < l  such that 
j45(ao, al ,  a2,...) - 45(bo, bl, b2,...)l ~< const, qk if a0 = b0,..., ak = bk. 

For the Kaplan Yorke model T (1.3), how to reduce the problem of 
representing (T~(xo, Yo)) as a functional of an absolutely regular process 
with exponentially decaying mixing coefficients to the corresponding 
problem for the one-dimensional transformation x ~ 2x (rood I ) described 
above has been shown. (27) Thus, this example fits into the general situation. 

At this point we would like to point out that the interval transfor- 
mations i f (x)= 1 - I Z x -  1[ and R(x)= 1 -[/~(x-c~)l ,  (/~= (1 + , J5) /2 ,  

= 1 - /~ -~)  also fit into our general framework. The same is true for 
certain diffeomorphic images of if and their perturbations as described in 
Section 4. 

3. U-STATISTIC ESTIMATORS FOR DYNAMICAL SYSTEMS 

The computations described in Section 4 need some theoretical 
justification. The theorems available in the literature do not suffice, and we 
therefore present what is needed in this section. The proofs will be given in 
Appendix II. We also would like to mention that the theorem presented 
below has almost immediate extensions to more complicated situations. 
For example, given two sets of observations arising possibly from two dif- 
ferent systems, a similar method can be developed to detect this difference. 

We begin with the definition of (one sample) U statistics. Let X~ ,..., Xn 
be random variables with values in Na, let m be an integer ~> 1, and let 

h: Ndx ""  x Na__+ 
m t i m e s  

be a symmetric (measurable) function. Then the associated U statistic is 
defined by 

U~ = ~ h(Xi~,... Xim) (3.1) 
l ~ < i l <  - ' "  <irn~n 

In this note the X1, )(2 .... will always form a stationary sequence. The sim- 
plest example of a U statistic is given by the sample mean 1In ~7= 1 X~ with 
rn = 1, d = 1, and h(x) = x. Other examples are the sample variance (m = 3, 
d =  1, and h being the symmetrization of (x, y, z ) ~  ( x - y ) ( x - z ) ) ,  the 
sample covariance for pairs of observations (m = 3, d = 2, and h being the 
symmetrization of ((xl, x2), (Yl, Y2), (zl, z 2 ) ) ~  ( x l -  yl)(x2-21)), the 
Wilcoxon statistic (m = 2, d =  1, h(x, y ) =  1/x + y> ~>), and the statistic Cn(r) 
in (1.2). 
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Next we describe the stationary process X'I, ~2  .... to which the U 
statistics will be applied. Let (Zn : n >~ 1) be an absolutely regular stationary 
sequence with mixing coefficients fl(n) satisfying 

fl(rt) a/(2+a)= O(n  -2  ~) for some a, 6 > 0 (3.2) 

and taking values in a finite set. Note that this will be satisfied in our 
examples by the itinerary process (G(x));  in fact, f l(n) will decrease by an 
exponential rate. Then X~, X2 .... will be taken to be a Lipschitz functional 
of (Zn:n~>l) ,  i.e., we assume that there exists a function f ( u l ,  u2,...) 
satisfying 

X j = f ( Z j ,  Z j+~ .... ) for j~> 1 (3.3) 

and f is Lipschitz-continuous in the sense that there is some e < 1 such that 

i f ( z 1 ,  z2 , . . . ) - f (z ' l ,  z~,...)l ~ const,. ~n (3.4) 

! t if zl = Zl,..., zn =zn.  
Again it is not hard to verify this condition in all our examples, 

because an(x)  takes values in a finite set and x can be written as a 
Lipschitz-continuous function of its itinerary provided T is hyperbolic with 
respect to the Euclidean distance. 

We also need to impose some regularity conditions on the kernel 
functions h. Two types of restrictions are described in the following, and we 
note that all examples from Section 4 belong to one of these classes. 

C lass  A. There a r e L > 0 ,  r>~0, a n d p > 0 s u c h t h a t  

]h(xl  ..... X m ) - h ( y ~ , . . . ,  Ym)l 

~L" ~ ilxi-yi]iP(l+Llxjllr+llyjll r) (xi, yj~EU) (3.5) 
i , j =  1 

where [t'H denotes the Euclidean norm in RJ. In this case we say that h 
satisfies the Lipschitz condition. 

Class B. For  h: (Ra)  m --* ~,  x ~ ~,  and e > 0, define 

osc(h, ~, x )  = sup{  l h ( y ) -  h ( y ' ) l  : H y - x[], Lly' - xil < e, 

y, y ' e  (~d)m} 
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As a function of x, osc(h, e, ') is measurable, even semicontinuous, and 
with respect to a probability P on Na let us define (2~ 

osc(h, ~) = f osc(h, e, x) dpm(x) 

This function is called the mean oscillation of h. If l im~oOSC(h,e)=0,  
then h is pm Riemann-integrable, and if sup~>o e -1 osc(h, e) < 0% then h is 
of bounded pm variation. Here we make an assumption stronger than 
Riemann integrability but weaker than bounded variation 

M =  sup e r osc(h, e) < oo for some r > 0 (3.6) 
c>0  

In this case we say that h satisfies the variation condition. At this point we 
remark that the following lemma is easily verified: 

L e m m a  1. Let h assume only finitely many values and let the set of 
discontinuity points of h be contained in a finite union of hyperplanes of 
(Na),~. If P is absolutely continuous with marginals P1 satisfying 

p/([a,b])<~Clb-al  r f o r s o m e r > 0 a n d C > 0  ( a , b ~ )  (3.7) 

then (3.6) holds. 

We need one more notation in order to formulate the main result. Let 
h be as before, and denote by dF the marginal distribution of the stationary 
process (X, : n >/1), i.e., the probability that X 1 belongs to the set A c Na is 
just F(A). Define a new kernel function h~ by 

Denoting by E F expectation with respect to the distribution F, let 

0 = EF[hl(X1) ] = f hl(x ) dE(x) 

and 

62=m2"( EF[hj(X1)2]-02+ Z EF[(ht(X1)-O)(hI(Xt)-O)]) 
t>~2 

(3.9) 

(3.1o) 

Theorem 1. The sequence U, of U-statistics converges to 0 in 
probability, and the sequence ~ ( U n -  0) converges weakly to the normal 
distribution JV'(0, a 2) with expectation 0 and variance o 2,  provided one of 
the following conditions (a) or (b) holds: 
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(a) (i) h satisfies the Lipschitz condition (3.5) 

(ii) (Zn :n >1 1) satisfies the mixing condition (3.2) 

(iii) (Xn :n ~> 1) is a Lipschitz functional of (Zn :n >~ 1) in the sense of 
(3.3) and (3.4) 

(b) (i) h satisfies the variation condition (3.6) 

(ii) (Z,  :n>~ 1) satisfies the mixing condition (3.2) 

(iii) (Am : n/> 1 ) is a Lipschitz functional of (Z~ : n ~> 1 ) in the sense of 
(3.3) and (3.4) 

In all examples considered in this paper it is not hard to see that these con- 
ditions hold (use Lemma 1). A proof of this theorem can be found in 
Appendix II. 

Let us now see how Theorem 1 applies. Suppose we want to test for 
symmetry of distributions. Then it is well-known that the mean or the 
Wilcoxon statistic perform well in case the (X, : n ~> 1 ) are independent. If 
we want to apply these statistics in the present situation, we have to get a 
good estimate of a 2 which, contrary to the independent case, involves 
variance and covariance estimates. The latter are derived again using U 
statistics with the appropriate kernel functions applied to 
(/~l(Xk) :k = 1 ..... n), where 

h l ( X k ) = ( / ~ i l l )  1 E 
1~<il < ... < i m _ l ~ n  

g~k 

h(X~, X~ ..... X~_,) 

is again a U statistic. 
If two or more test procedures for the same problem are available, 

their relative asymptotic efficiency tells us which of them is preferable in the 
sense that it needs less observations to produce a decision on a fixed level 
of reliance than the others. For  example, let f(O, x) be a family of 
probability densities on ~ indexed by some parameter 0, 101 < 01, and sup- 
pose that f has an asymptotic expansion f(O, x) =fo (x )  + Ofl(x) + 0(02). 
Each f(O, x) might be the density of an invariant measure of a dynamical 
system that we are observing, and we must decide on the basis of n 
successive observations X1 = x, )(2 = Tx,..., X n = T ~- ix whether 0 = 0 (Ho) 
or not (H1). 

Suppose S, = Sn(X~ ,..., Xn) are statistics which converge in probability 
to a number s(O) if the underlying invariant density is f(O, x). Intuitively 

( ds'] 2 o/Var(Sn ) eff(S,) = \ dOj ~ = 
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is a good measure of performance of Sn. If Sn and S', are two different 
statistics, both designed for testing Ho against H1 and both asymptotically 
normal (when suitably normalized), then 

eff(s.) Q = - -  
eff(s') 

is their relative asymptotic efficiency, and the classical theorem of Pitman 
and Noether says that Sn performs better than S'n (in the sense described 
above) if Q > 1. In other words, given a number n, choose a (minimal) 
number m = mn such that the procedures based on S, and Sm perform 
equally well. Then lim, ~ co mn/n = Q. Thus we see how Theorem 1 applies 
to efficiency comparisons. 

4. E X A M P L E S  

I. Tests for  S y m m e t r y  of  the Invar iant  Densit ies 
of  Interval  Maps  

One of the simplest dynamical system is the so-called "hut-map" 
7~: [0, 1] --* [0, 1], T (x )=  1 - [ 2 x -  1[ (mapping T 1 from the introduction). 
The constant function 1 is its unique invariant density. If u : [0, 1 ] ~ [0, 1 ] 
is any diffeomorphism with u'>~0, one can construct from T the map 
Tu(x )=u- l (T[u (x ) ] ) ,  and it is not hard to see that u'(x) is its unique 
invariant density. Hence, if u'(x) is symmetric at �89 (equivalently if 
u ( 1 - x ) = l - u ( x ) ) ,  Tu is an interval map with symmetric invariant 
density/TM Denote this class of conjugating diffeomorphisms by U. We 
study perturbations Tu(e, x) = Tu(x) + eG(T~x), where G is symmetric at ~, 
analytic, and 0<.% y + G(y)<~ 1 (0 <~ y<~ 1). For small e, the invariant den- 
sity h~(e, .) of Tu(e, .) is analytic in e, i.e. 

h,(e, x) = u'(x) + ehl~(x) + e2hZ(x) + ... where 
(4.1) 

1__ h~ - - ( u '  G)' is antisymmetric 

(Here we have to assume that u-1 is analytic with nonvanishing derivative 
except at z = 0  and z =  1, where (u - l )  ' ( z ) - 0 ,  (u 1),, ( z ) # 0  are allowed 
(see Ref. 19).) Hence hu(e, �9 ) is symmetric if and only if e = 0, and tests for 
symmetry can be based on the following functionals: 
Expectation 

#(u, e) = f xhu(e, x) dx = �89 + e f u'(x) G(x) dx + 0(e 2) (4.2) 
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Wilcoxon functional 

w(u,e)=ff l{x+y<~th~(e,x) h,(e, y ) dx dy 

= �89 + 2e f [u'(y)]2 G(y) dy + 0(e 2) 

(use (4.1), the symmetry properties and integration by parts). 
The corresponding U statistics 

I N - - 1  
S N ( x ) = ~  ~ Ti(x) (4.4) 

i = 0  

1 N--1  

Wu(X)=N(S_l) ~ l{7~x+rJx>l} (4.5) 
i , j=  0 
i # ]  

where T is one of the transformations T,(e,.) (ueU, e small) are 
asymptotically unbiased estimators of p(u, ~) and w(u, e), respectively. A 
direct computation using the symmetry of Tu and u' shows that T~x and 
Tlux are uncorrelated if k r l. Hence 

while 

and 

lim var.,~[x/-N ~N]= I (X--�89 U'(X)dx +0(e) 

lim x/-N {E.,~[SN] --#(u, e)} = 0  
N ~ c o  

a ~) o=0 f 
~ #(u, = u'(x) 6(x)  ex 

such that by Noether's theorem the asymptotic efficacy of SN is 

Ef l /f e f f (gN)  = U'(X) G(x) dx (x - 1)2 u'(x) dx (4.7) 

using the notation of Chapter 5 in Ref. 35. Similarly one shows that 

eff(VVN) = 12[~u'(x)2G(x)dx] 2 (4.8) 

For G(x) = x(1 -- x) (which produces ;P(e, x) = (1 - e) ~P(x) + ~4x(1 - x)) 
and for various choices of u' the numerical values are displayed in Table I. 
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Table I. 
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i) (0~<~< 1, 
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0 

ll 
t / 

/ 
II I / 

,!'// 

Figure 2 

/ 
/ 

1 



80 Denker and Keller 

Q 

n~ 

0'- - -  o ~  1' 
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Table I I .  

-0 .2  0.4744 0.4590 0.0075 0.0077 0.4478 0.4138 0.0153 0.0152 
--0.2 0.4583 0.4590 0.0077 0.0077 0.4180 0.4138 0.0152 0.0152 
--0.1 0.4660 0.4815 0.0079 0.0077 0.4343 0.4632 0.0153 0.0154 
-0 .1  0.4945 0.4815 0.0075 0.0077 0,4887 0.4632 0.0154 0.0154 

0 0.5053 0.5 0.0076 0.0077 0.5108 0.5 0.0154 0.0154 
0 0.4959 0.5 0.0078 0.0077 0.4921 0.5 0.0154 0.0154 
0.1 0.5223 0.5151 0.0076 0.0077 0.5452 0.5302 0.0154 0.0154 
0.1 0.5212 0.5151 0.0076 0.0076 0.5016 0.5302 0.0153 0.0154 
0.2 0.5338 0.5276 0.0076 0.0076 0.5678 0.5546 0.0153 0.0153 
0.2 0.5380 0.5276 0.0076 0.0076 0.5769 0.5546 0.0152 0.0153 
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n, I~N is in general asymptotically more efficient than SN, while for large n 
and 0., close to 0.8, SN is slightly better than WN. (Fig. 2 shows the shapes 
of some of these transformations Tu.) 

The results of numerical simulations were in good agreement with the 
asymptotic theory for N~> 250 (roughly). In Table II we summarize some 
results when u'(x) = 1, N =  1400, e = j /10  ( j =  -2,..., 2). For each e we used 
two different initial values. 

If we had not known that the observations are uncorrelated, this could 
have been easily deduced from a correlogram, which for SN typically looks 
that shown in Fig. 4. A completely different correlogram can be found in 
the next example. 

II. An Example  w i t h  I m p o r t a n t  Cor re la t ions  

Due to the particular symmetries of the transformations T,,, the 
asymptotic variances of the test statistics in (I) were the same as if the 
underlying observations had been independent. Here we give a simple 
example where the correlations reduce the asymptotic variance to nearly 
7.5 % of that in the independent case. 

Let R : [0 ,1]  ~ [0 ,1]  be given by R(x)=l -13(x-~) l ,  where 
/r = (1 + x/5)/2 is the positive solution of 3 2 - / ~ -  1 = 0 and e = 1 -  fl-1. 
Then R :0  ~ c~ ~ 1--*0 (see Fig. 5), and the simple orbit structure of the 
critical points of R permits the explicit computation of the following quan- 
tities: 

822/44/1-2-6 
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IX 

0 
Figure 5 

The unique invariant density h(x) of R is 

~ ( 1 + ~ )  1 if x~<~ 
h(x) = ~/7(1 + ~)-1 if x > ~  

(; ; 4  
f xh(x) dx=~(l +~), xh(x) dx =~-/72 (4.9) 

f x2h(x) dx-~-~ 
(4.10) 

; (; Co:-- xZh(x) dx - xh(x) dx = ~ - 5 ~ 0 . 0 7 6 4  

ck := f xRk(x) h(x) d x -  ( I xh(x) dx) 2 

=~((-1)" Co - 4  e") (4.11) 

w h e r e ~ n = 0 i f n = 0 m o d 3 ,  l i f n = l m o d 3 ,  and - 1  i f n = 2 m o d 3 .  
Hence the asymptotic variance of the mean-value estimator SN(X) is 

~ co c r2 ---- Co + 2 ck = ~ Co" 0.0745 ~ 0.0057 (4.12) 
k=l ~ 

The calculations are based on the knowledge of some of the eigenfunctions 
of the Perron Frobenius operator 2 '  of R, ~f(x) = ~- 1 ZRy = x f(Y) 

LPh = h 

{11 i fx~<~ 
L*~ = (fl - 2) e2 with e 2 ( x  ) ---- - -  fl if x > 



and 5fle3,4=(2-fl)7+_e3,4 with 7_+ = ( - 1  -- ix/3)/2 

~'1 + (y+/~-  1) x if x~<~ 
e3'4- [ - ( 2 7 ~  + fl) + [~-+(fl + 1) +/~] x if x > ~  

i 

(For further details on this operator, see Appendix I.) 
Here are three values of SN(X) for N =  1400. The second value in each 

row gives the standard deviation estimated from the data, and the third 
one the number of correlations that have been taken into account 

0.5508 0.0028 5 

0.5516 0.0039 5 

0.5534 0.0020 5 

These results should be compared with the theoretical values 

0.5528 0.0020 

Figure 6 shows the correlograms of two of the three samples (the third 
is similar) and Fig. 7 the corresponding partial correlation sums on which 
the decision was based how many correlations should be considered for the 
estimation of the asymptotic variance. The difference from Fig. 4 is striking. 

For /~= 1.5, a value for which we could not compute the theoretical 
values as above, the estimation of the asymptotic variance of SN is still 
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Figure 6 
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Figure 7 

more delicate, as can be seen from Fig. 8 where the partial correlation 
sums are plotted against time ( N =  1400). Here are three values of SN(X) 
with estimated standard deviations and number of covariances taken into 
account 

0.5509 0.0018 14 

0.5531 0.0031 10 

0.5529 0.0018 14 

Figure 8 
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III. Est imat ion of  the Grasberger -Procacc ia  
Corre lat ion Exponent 

We consider the dynamical system (1.3) with 2 = 0.2 and estimate the 
vector [C(ri)] with five values of r i=0 .08"2  - i  using the estimator 
[dN(r~)]---cf. (1.1) and (1.2). Here and in the sequel, the index i ranges 
from 0 to 4. The distribution of {x/N [E'N(r~) - C(ri)] } approaches a five- 
dimensional normal distribution (N ~ oo ) with zero expectation and a cer- 
tain covariance matrix (~r~.), which can be consistently estimated from the 
underlying data. The normality result is a variant of Theorem 1. In excep- 
tional cases the distribution might be degenerate. We consider this problem 
later. 

Assuming that C(r) obeys a power law, i.e., C(r)~-Kr  v ( r ~  0) for 
some constants K and v, the vectors [log CN(ri)] (Ne ~)  provide a con- 
sistent and asymptotically unbiased sequence of estimators for 

[log C(ri)] ~ [log K +  v log ri] (4.13) 

Furthermore, x /N  [log dN(rt) -- log C(ri) ] tends to a five-dimensional 
normal distribution with zero expectation and covariance matrix 
(co) = [C(ri) 1 a2C(r j ) - l ] .  Assuming strict equality in (4.13), one obtains 
a consistent and asymptotically unbiased sequence of least-squares 
estimators VN for v, where x /N(fN--V)  is asymptotically normal with 
variance cr 2. More exactly 

vN = ~ ~ ui log C:v(ri) , 
-7 

2 1 _ 1  

where 

ui = log r i - -  ~ log rk (log rk) 2 

a 2 can be consistently estimated since the c~ can. 
In Table III we give the results of 20 runs with N =  750. fU is the 

estimated value for v, 64 is the estimated standard deviation with four 
covariances taken into account, 6o (the estimated standard deviation 
without covariances) is given for comparison, and zl is the mean square 
deviation of [log CN(ri) J from the straight line log C(r) = log/~N "~ YN log r. 

These results should be compared to the value D = 1 + (log 2/log 5) --- 
1.431 tbr the Hausdorff dimension of the system's attractor ~7) which is close 
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Table III. 

~IN 2a4 260 2J 

1.378 0.054 0.037 0.019 
1.398 0.049 0.035 0.045 
1.442 0.053 0.036 0.017 
1.374 0.043 0.033 0.033 
1.438 0.045 0.034 0.027 

1.419 0.033 0.032 0.017 
1.409 0.041 0.032 0.012 
1.436 0.041 0.033 0.064 
1.379 0.059 0.040 0.038 
1.444 0.040 0.034 0.027 

1.465 0.047 0.036 0.031 
1.397 0.034 0.032 0.042 
1.449 0.042 0.036 0.029 
1.476 0.049 0.035 0.027 
1.395 0.058 0.036 0.055 

1.376 0.038 0.034 0.026 
1.449 0.042 0.034 0.037 
1.351 0.053 0.034 0.041 
1.444 0.053 0.036 0.024 
1.426 0.046 0.033 0.069 

to v(v ~D). Grasbe rge r  and  Procacc ia  (8) ob ta ined  the es t imate  1.42 + 0.01 
for v on the basis  of N = 15000 data ,  where the er ror  b o u n d  is der ived  from 
the mean  square  deviat ion.  Unnecessa ry  to say tha t  with our  m o d e r a t e  
sample  size we d id  not  a t t empt  to ob ta in  a bet ter  es t imate  than  
G r a s s b e r g e r - P r o c a c c i a ,  bu t  we want  to po in t  out  how such es t imat ion  
p rob lems  can be t rea ted  in a s ta t is t ical ly  r igorous  way. Never theless  the 
above  d a t a  need some c o m m e n t  

1. The  es t imates  for A fluctuate much  more  than  those  for the 0.k and  
seem to be a very unre l iable  es t imate  for the er ror  b o u n d  of fu-  

2. A l though  the es t imate  of 0 4 f luctuates much  more  than  tha t  of 0"o, it is 
evident  tha t  a conservat ive  es t ima t ion  of the er ror  b o u n d  for ~N canno t  
neglect  the t ime cor re la t ion  of the data .  

As men t ioned  earlier,  the general  theory  does no t  exclude the case of a 
degenera te  l imit ing d i s t r ibu t ion  (a l though  this is very unl ikely  to happen) .  
Therefore  we checked the a p p r o x i m a t e  no rma l i t y  of the stat is t ic  
x/-N(fu-V)/64: Let  •med denote  the med ian  of the above  t abu la t ed  20 
values of r  F o r  the stat is t ic  ~ (fN -- Vm~,~)/64 we ca lcula ted  the value of 
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Figure 9 

the Shapiro-Wilk test on normality as W= 0.95. (The 10 % and 90 % levels 
are 0.920 and 0.979, respectively.) Five further tests on groups of 50 
independently calculated VN values also supported the assumption of nor- 
mality. 

As a final remark, consider Fig. 9. It shows the partial correlation 
sums for the estimators log CN(ri) ( i =  0 ..... 4; N =  750). It is clearly seen 
that even very similar estimators (based on the same set of data) may 
produce rather different correlation coefficients, in particular correlations 
between the data may both augment and reduce the asymptotic variance of 
estimators. 

A P P E N D I X  I 

The Per ron-Frobenius  Opera to r  

Let (X,~ ,m)  be a nonatomic probability space, T : X ~ X  a 
measurable, nonsingular, and noninvertible transformation. The Perron- 
Frobenius operator 5 ~ L~ ~ L~ is defined by 

f f . (goT)  dm=i~q~(f).gdm for all f6L~m and g6L~ 

In words, d ( f )  can be described as follows: If the system at time t is 
described by the distribution f dm, then it is described at time t + 1 by 
L~(f) dm. If T' denotes the Radon-Nikodym derivative of T with respect 
to m, one can write 

LP(f)(x)= ~ f(y)/T'(y) 
Ty=x 
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In many cases ~ can be restricted to a linear subspace B of L~m which 
can be endowed with a Banach-space structure in such a way that ~ is a 
quasicompact operator; see, e.g., Refs. 15, 16, and 26. For piecewise 
expanding interval transformations the space of functions of bounded 
variation is a good choice for B. If the system (T, m) is mixing, i.e., if 
m ( T - " A  r converges as n ~ oo for all A, B e ~ ,  then ~ can be decom- 
posed 

L P = ~ b + g  j 

where r is a projection on the one-dimensional space spanned by the uni- 
que invariant density h = 4(1) and where gt is a linear operator on B with 
spectral radius strictly less than 1, ~bg~= 7t~b = 0. Using this decomposition 
one can show that the coefficients of absolute regularity 3k defined in Sec- 
tion 2 decrease exponentially fast to 0. This situation is met in all examples 
of Section 5. 

If (T, m) is not mixing, the quasicompactness of 5a still guarantees 
that it can be decomposed into finitely many ergodic components on each 
of which (T, m) can be described as a product of a finite cyclic permutation 
with a mixing system. 

A P P E N D I X I I .  PROOF OF T H E O R E M  1 

In this appendix we give a proof of Theorem 1 in a slightly more 
general context, and afterward show that these general conditions are met 
in our specific situation. We assume throughout that X1, X2,... is a (strictly) 
stationary E-valued process where (E, B) denotes a measurable space. 

Let h : E  m--, ~ (m >~ 1) be a measurable function and let A ___ N m be 
defined by A --- { (tl ..... t , , ) : t i  r tj (i r j)}. Let p >~ 1. We say that the process 
( X , : n  >~ 1) satisfies the condition (Ap) with coefficients O(n)$ 0 and 3(n)~ 0 
(as n ~ oe) if there exist an t /> O, an absolutely regular, strictly stationary 
process Zx,Z2,. . .  with coefficients of absolute regularity 3(n) and 
measurable functions f t  (l~> O) such that 

J( j=X~j=fo(Zj ,  Zj+I,...) (j>~ 1) (II.1) 

Setting Y~=f~(Zj,  Zs+I,..., Z j+l_ l )  we have for every (tl,..., tm)eA 

(Elh(X, 1 ..... X,~) - h(Xt, l ..... Xttm)iP) lip 

~<O(max{1, rain I t i - t j [ - l } ) + l  1 - ,  (II.2) 
l <~iv~j<~m 

Moreover, we say that (X,: n >~ 1) satisfies the condition (o-a) where 6/> 0 if 

~2+~ = sup Eih(Xz, ..... Yzr.)f 2+~ < o0 
( t l , . . . , tm)  E A 
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We first note the following: 

k e m m a  2. Let (X,:n>~ 1) satisfy conditions (Az+a) and (aa). Let 
(X~(v):n>>. 1) (v=  l,..., m) denote independent copies of the process 
(Xt,: n ~> 1) (t~> 1). Then 

sup[EIh(XJ~(vt) ..... XI~(V,~)r2+a]l/~2+a><~aa+tp(1)+ 1 (II.3) 

where the supremum extends over (t~,..., t , ,)eA, I>~1, and (v~ ..... v, ,)e 
{ 1 , . . . , m }  m 

Proof. Fix ve  {1 ..... m} '~, l~> 1, and (t~ ..... tm)eA. Using Lemma 8 in 
Ref. 5 it follows that 

[E Ih (X ' , , ( v~ ) , . . . ,  X',m(Vm))l ~ + ~] '7<= § ~ 

~< sup [EIh(Xl,,,..., XlSm)12+a~ 1/(2+6) 
(sl , . . . ,Sr~) ~ ~t 

Applying (11.2) and taking the supremum on the left-hand side, (11.3) 
follows. 

The function h is called degenerate if 

Eh( al ..... a,_l, X1, a, ..... a,,_ l ) = 0  (II.4) 

for all 1 ~ t ~< m and a I ,..., am_ 1 E E. 

k e r n m a  3. Let m>~2. Let (X,:n>>. 1) satisfy condition (A2+a) and 
(aa) for some 6 > 0 such that 

fi(n)a/(2+a)= O(n -2-~)  for some 

S, ~(k)< ~ 
k ~ l  

If h is degenerate, then 

ERN(h )2 = o(N2m- 1) 

ProoL 

O < 2 e < ~  and (II.5) 

(II.6) 

where (II.7) 

R~(h) = ~ h(x,,,..., X,m) (II.8) 
( t l , . . . , tm)  ~ ,d u 

l ~ t j < N  

Denote by R~(h) the random variable defined as in (II.8) 
replacing the (Xn) by (Xtn). By elementary manipulations and setting 
[= [N 1/2-~/4] w e  have that 

IlIRu(h)l[2+6-[[R/N(h)II 2 + a[ 

= O { N " - ' [ l +  y,~b(k)]+Nmt - ' - " }  

= o(N m- ~]/2)) (II.9) 
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(Xl,: n~> 1) is an absolutely regular sequence with mixing coefficients 
/~((n- l) v 1 ). By Lemma 2 all 2 + 6 moments are uniformly bounded, and 
hence Proposition 2 of Ref. 5 applies 

ERlu(h)2 < Fl2N2m- 2 +~ (II.10) 

where F denotes a constant depending only on [/t(n): n/> 1], ~a, e, and 6. 
(Note that (II.10) is slightly different from the assertion in Proposition 2, 
but inspecting its proof the statement follows easily.) Since, by the choice 
of l 

12N-2+~=o(N 1) 

(II.7) follows easily. 
In the proof of the last lemma the (A2+~) condition was needed in 

order to apply Lemma 2 and Proposition 2, but for the latter some (Ap) 
condition (p~> 1) would suffice. Consequently, if the conclusion of 
Lemma 2 holds for other reasons, some  (Ap) condition suffices. This yields: 

I .emma 4. Let m~>2. Let (X,:n>~ 1) satisfy condition (Ap) for 
some p t> 1 such that (II.5) and (II.6) hold for some 6 > 0 and 0 < 2e < q. If 
h is degenerate and bounded, then 

[E [RN(h)[ u] 1/q ~--. o(N,~,- 1/2) (II. 11 ) 

where q=min(p,  2). The convergence in (II.11) is uniform over bounded 
families of functions h. 

Define 

hj (x l , . . . , x f l= f ' " fh (x~ ,x2  ..... xm) f i  dP(xk) (xl, . . . ,xjeE) (II.12) 
k = j + l  

where P denotes the distribution of X, and, as in (3.9) 

O= Ehl(Xl) (II.~3) 

We have 

Theorem 2. The sequence x ~  (UN- O) (N~  l) converges weakly 
to the normal distribution N(0, 0 "2) with expectation 0 and variance 

~2=m2{gh1(~l)2-~-2 ~ ghl(~l)hl(~t) } (II.14) 
t > ~ 2  

provided one of the following conditions is satisfied: 
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Proof. 
write 

(a) (X,: n >  1) satisfies the conditions (aa) and (A2+6) w.r.t, each hJ 
( j =  1 ..... m) for some 6 > 0  such that (II.5) and (II.6) hold. 

(b) (X,: n ~> 1) satisfies the condition (Ap) for some p ~> 1 such that 
(II.5) and (II.6) hold with respect to each hj (1 <<.j<~m) and h is bounded. 

According to Hoeffding's decomposition method we may 

c = O  

where U~v denotes a U statistic with respect to a symmetric degenerate and 
measurable function hc: EC ~ ~. ~ can be written as a linear combination 
of the functions hi, and hence (X,: n>~ 1) satisfies the conditions (aa) and 
(A2+a) (resp. (Ap)) with respect to each 7~. From Lemmas 3 and 4 we con- 
clude that 

c = 2  

in probability. 
If c = 0 ,  then U~N=O and if c =  1 then hl =hi--0. Consequently, 

xfN(UN-O) and (m/x/N)Z~= 1 [h~(Xt)-O] have the same limit dis- 
tribution. By assumption, we can apply Theorem 18.6.2 of Ref. 17 to the 
sequence {hL(X~): n ~> 1 } to conclude that 

m N 

x/~ ,=~Z [hj(X,)-O] -~ N(O, a 2) 

weakly. 
In order to obtain Theorem 1 from Theorem 2, we note that the f 

from (II.2) are easily constructed, because f is Lipschitz-continuous, and 
the following lemmas hold: 

kemma 5. Let h satisfy the Lipschitz condition (3.5) and suppose 
that (X,) satisfies ]lXtllp < oe and 

@(l)=(E[X1-X~[p)l/p-~Oasl--*oo forsomep>2(r+p) (II.15) 

Then (X,,) satisfies the conditions (A2+a) and (o'2+a) with respect to each 
hj for some 6 > 0. 

Proof. Let (2+6)(r+p)<.p. Then 

Nh(x,~ ..... X , m ) -  h(X',, ..... X',m)lt2+~ 
~< const. [r [ 1 + 2 IIX~ILp + Cp(/)]r 
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and, noticing that together with h also each hj satisfies the Lipschitz con- 
dition, the lemma follows immediately. 

I_emma 6. Let h satisfy the variation condition (3.6). If f is 
Lipschitz continuous, then (Xn) satisfies condition (A1) with respect to 
each hj. 

Proof. Observe first that with h also each hj satisfies condition (3.6). 
Since (3.6) implies that h is almost surely bounded (cf. Lemma 1.4 of 
Ref. 20), we have 

EIhj(X,,,..., X, m) t - h i ( X , ,  ..... l x ,o ) l  

<~ E{osc[hj, C2 -s, I l (x, ,  ..... x , ) ]  } 

~< f osc(hj, C2 -~, x) dPJ(x) + 8 I[hf[ 0o ( J -  1 ) fl((min [ t i -  tk3 - l) v 1) 

<~MCr2-r~+8]lhl]~ ( j -  1) fi)(min It i -  tkl--l)  v 1) 

(The second inequality follows from Lemma 1 of Ref. 41.) Consequently 
(II.2) is satisfied with p = 1 and ~b(n) ~ fl(n). 
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